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FIRST-ORDER-HOLD INTERPOLATION DIGITAL-TO-ANALOG CONVERTER
WITH APPLICATION TO AIRCRAFT SIMULATION
William B. Cleveland

Ames Research Center

SUMMARY

Those who design piloted aircraft simulations must contend with the
finite size and speed of the available digital computer and the requirement
for simulation reality. With a fixed computational plant, the more complex
the model, the more computing cycle time is required. While increasing the
cycle time may not degrade the fidelity of the simulated aircraft dynamics,
the larger steps in the pilot cue feedback variables (such as the visual scene
cues), may be disconcerting to the pilot.

The First-Order-Hold Interpolation (FOHI) Digital-to-Analog Converter
(DAC) is presented as a device which offers smooth output, regardless of cycle
time — a significant improvement over the conventional Zero-Order-Hold (ZOH)
DAC and the First-Order-Hold Extrapolation (FOHE) DAC. The Laplace transforms
of these three conversion types are developed and their frequency response
characteristics and output smoothness are compared. The FOHI DAC exhibits a
pure one-cycle delay. Whenever the FOHI DAC input comes from a second-order
(or higher) system, a simple computer software technique can be used to
compensate for the DAC phase lag. When so compensated, the FOHI DAC has
(1) an output signal that is very smooth, (2) a flat frequency response in
frequency ranges of interest, and (3) no phase error. When the input comes
from a first-order system, software compensation may cause the FOHI DAC to
perform as an FOHE DAC, which, although its output is not as smooth as that of
the FOHI DAC, has a smoother output than that of the ZOH DAC.

INTRODUCTION

Over the last decade, the field of real-time, man-in-the-~loop aircraft
simulation has undergone some basic changes. The parallel computing ability
of analog computers has given way to the serial digital computer with its
obvious computational advantages and some not so obvious disadvantages. Early
digital computers had insufficient speed to simulate an aircraft, control
cockpit simulators, and acquire data (see fig. 1), all without producing a
"ratchetlike'" response in the simulation. Now, however, digital computers are
so fast that the serial computation of the kinematic equations in real-time is
no longer a serious problem, but discreteness in the outputs remains a problem
for simulation. From a psychological standpoint, the discreteness of the data
output from the computer can be distracting to the pilot attempting to fly a
simulated aircraft. He expects to see smooth continuous changes in his flight
information, just as he would in the real aircraft, but the discreteness of



the computer output may degrade the
[ instrumentation | _ realism of the simulator to the
| dislay [ point where he "flies the simulator'
rather than the aircraft. Experi-
Digital aircraft enced pilots can accommodate to or
_)ﬁi’ﬁmmmmnmd_» bAC | compensate for many of the indica-~
ADC data tions that they are flying a simu-
acqulsmon .
lated aircraft rather than a real
aircraft; however, it is distract-
ing to the pilot to contend with
spurious flying cues that are due
o to output data discreteness and not
Visual system L to the simulated aircraft
‘ - characteristics.
Figure 1.- Elements of the piloted
digital aircraft simulation. There are two causes of the
discreteness of data output from
the digital computer via the ordinary DAC. These are quantization effects
that are due to the number of bits in the DAC word and the effects that are
due to the discrete nature of the output. Figure 2 illustrates the latter.
The roughness due to DAC quantization is alleviated by increasing the number
of bits in the DAC word length. However, the roughness due to time discrete-
ness is a complex phenomenon which involves computer hardware and software.
The problem for the simulator pilot is most acute when the instrument dynamics
can closely follow the stairstep-type signal or when the steps are magnified
in some way, such as with angular displacements in a visual scene. A typical
visual scene is modeled to scale and scanned by a television camera on a
servo~driven gantry which responds to an angular pitch "up" command by shift-
ing the scene downward on the television monitor. The angular discreteness is
translated into a positional discreteness on the visual scene monitor through
a multiplication of the distance from pilot's eye to the monitor. Reduction of
these jumps is desirable to avoid pilot distraction in a research environment.

'

Control

Motion system J

Many roughness problems can be cured by increasing computation speed, but
most complex real-time programs are already running near the maximum speed of
the computer. This conflicts directly with the need to lengthen the cycle
time to allow more complex (and therefore more realistic) models to be simu-
lated. The FOHI DAC, analyzed within this report, copes with this problem by
eliminating or reducing the discreteness in DAC outputs to the simulator.

DAC's are a rather small component in a total piloted simulation system
which includes a computer, a cockpit, and simulators. However, they are the
important link within the pilot's closed-loop control system. In the analysis
of any control loop, the model of each element is needed to assess the whole.
Therefore, the frequency response and the discreteness effects of two well-
known types of DAC's, the ZOH and FOHE DAC's, are compared with those of the
FOHI DAC in the following discussion,
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Figure 2.- Comparison of various DAC outputs with a corresponding continuous
signal.

DIGITAL-TO-ANALOG-CONVERTER FREQUENCY RESPONSE

The function of the DAC is to change the form of a variable from a pat-
tern of bits in the digital word into a continuous (normally piecewise con-
tinuous) analog voltage signal. Figure 2 compares the ZOH, FOHE, and FOHI DAC
output signals versus a continuous counterpart signal. By far the most common
type in use today is the ZOH DAC. TFigure 2(b) shows the way a value is held
constant between sample points which occur at interval T.

In an effort to obtain a smoother output from the digital computer,
First~-Order Hold (FOH) DAC's may be employed. Figure 2(c) illustrates the time
history of an FOHE DAC, which uses one past in addition to the present value
of discrete input data to extrapolate a more representative output than that
of the ZOH DAC. Inspection of figures 2(b) and (c) shows that, as the fre-
quency content of the continuous signal increases and as T is increased, the



discontinuous jump in the outputs also increases. If interpolation, instead

of extrapolation, between sample points is used on the FOH DAC, there are no

discontinuous jumps, since the linear portions of the output start and end on
sampled values, as seen in figure 2(4d).

The transfer function of a DAC is derived next in order to make meaning-
ful comparisons between the three types of DACs discussed.

General Transfer Function of Linear Hold DACs

For zero- and first-order DAC's, the output y(¢) is a piecewise linear
function of the input x*(¢) and ¢.

x*(t)
x(t) :>:’ DAC |—yl(t)

T

The output function is a constant or ramp in the nth T period and can be
represented by

Yy (1) = 4,7 + B, 0O<t<T (1)
so that
y() = nzw: (4T + By) (2)
where
A, = ayxl(n = 1)T] + a,a(nl) (3)
B, = byzl(n ~ 1)T] + byx(nT) (4)

and where a; and bi are constants determined by the particular DAC. For
example, the ZOH output has a constant value equal to x(nT) throughout the
interval t. Thus a; = a, = b; = 0 and b, = 1.0.

Taking the Laplace transforms, one obtains
® (n+1)T
-8t
Y(e) = Ly = ), 4,7 + B T dt (5)

n=-c nT

By letting T = ¢t - n7T, the above equation becomes

nT T nT T -8T
Y(s) Aye g f e T dr + Bne_s f e dt
o) 0

~-snT
(SlAn + San)e



where

and

By using the shifting properties (discussed in the appendix), for S;, one gets

Z SlAne—snT = 5, Z {az[(n - 1T] + alx(nT)}e—snT

y]==00 n=—w

= X%(s)8, (a;e”°T + a,)
Similarly, for S,, we have

D 5,8, = xx(8)5, (b

=00

T
+ bz)

The desired transfer function then becomes

Y(s) .1 (a -sT sT sT
X*(g) g2 ‘%1°

+a,) (1 -e

—ere™ ) 42 e pa - ()

The specific cases -of the ZOH, FOHE, and FOHI DAC's may be obtained by
proper selections of the a and b constants.

Zero-Order-Hold DAC

The time function y(¢t) is seen, from sketch (a), to be a constant over
the period 7. In which case,

y(£) =xnl) for nT<t<mn+1)r . (7)
y(t)
Thus, comparing equation (7) with (1),
(3), and (4) it follows that S I
|
a1=a2=b1=0andb2=l. I
By substituting the derived values e m;nT 1t
for a; and b; into the general trans-
fer function, we have Sketch (a)
¥() _1-¢°7 @
X*(s) s



As shown in the appendix, given X(s) is the Laplace transform of x(#), then
the transform of the sampled variable x*(¢) is

%Zw: X(S-J'”—;”) (9)

H=—00

X*(s)

The transfer function from x to y for the ZOH DAC may then be written

-a8T ©
Y(s) _1-e X(é . n2m

X(s) sT Td T

Y

While the transfer function from x to y is complicated by the repeating spec-
trum, the multiplier 1/7 renders the transfer function nondimensional and
allows determination of the magnitude of the frequency response, as a function
of the nondimensional product wl.

Thus,

-Ts
_1l Y() 1-¢e
=T Xx(s) - er (10)

By substituting ¢ = jw, one may obtain the magnitude and phase of the sinu-
soidal frequency response, as follows:

1, .0 2] wr
kf Gy (Juw) | = 5| sin 5 l 11)
% G, (jw) = - %11 (12)

First-Order-Hold Extrapolation DAC

From sketch (b), one can see that

y () = 'x(nT} —zl (- l)T]' T+ @)
y{t)
(13)
1

for n'T <t < m+ 1)T and 0 < T < T, : x(nT)[——=——— i

x[(n=NT] | ——— : Il
Comparison of equation (13) with (1), J i i »

. B
(3) 4 and (4) ylelds (n—NT nT (n+1)T l !
1

a, = -a; =53 bl = 0 and b2 =1 Sketch (b)

which may be substituted into the general transfer function, equation (6), to
obtain



2
6 (s) =X . L (1 - e'ST) (1 + sT) (14)

For the frequency response characteristics, the magnitude relationship is

1 ol e+ w2r2)1/2 L r
lT GFE(Jw)~ = w272 sin® = (15)
and the phase is

% GFE(jw) = tan~ ! wT - w7 (16)

First-Order-Hold Interpolation DAC

Sketch (c) illustrates the time shift between input and output, which
yields the time function

y(t) = {e(T) - x[(n - 1)T} %

y(t)

+x[(n - 1)T] (17)

fornT <t < n+ 1)Tand 0 <t < T. X h_“_;;:;>7”’/q
x[(n—1)T} —— — |
|

Comparison of equation (17) with (1), [
(3), and (4) yields the constants nT  (n+N)T

1

a, = -a, b, = 1 and b2 =0 Sketch (c)

1

which, upon substitution into the general transfer function, equation (6),
yields

_ Y() _ 1 8TV
Gor(e) = Faiay = Tom e ) (18)
Since
1 _IL 2
T GFI(S) = [T Gz(si]
the magnitude and phase relationships are
1 )| = in2 Wl
7 GFI(Jw) = 22 sin® = (19)
% GFI(Jw) = —uT (20)



DAC SMOOTHNESS

A measure of smoothness is the maximum error between the DAC output and a
corresponding continuous input sine wave signal x = A sin wt. For the ZOH,
the error is

e =A sin[(n + %)wé] -4 sin(GwT) 0 <1< T (21)

which is a maximum near the zero crossing of the sine wave. 1If we let the
time n7T be at the crossing, the maximum error occurs when T = 7. The maximum
error is then given by

Emax = 4 sin T

and, for small w7, the maximum error is

Emax/4 = 0T (22)

The maximum error for FOHE occurs when wt is near w/2. The FOHE error
relation is

e = Asin[(n + %)w] - {Asin(an) - A 7 sin(w?) + 4 3 sin[(n- l)wT]] 0sT<T

(23)

If the time 7 occurs at the peak of the sine wave, then n = 7/2wl. The maxi-
mum error occurs at £ = (# + 1)7. On substituting these values in the FOHE
error relation, the solution for the maximum error is given by

lepax| /A =~ w212 (24)

The maximum error for FOHI also occurs when w7 is near w/2. Assuming the
sample points are equally spaced about the peak amplitude, the maximum error
occurs at the peak of the sine wave. Thus, the FOHI error relation is

e =Agin s - lAsin(an) + 4 7 sin[(n + Dol - 4 5 sin(an)’ 0<t<T

(25)

Under these conditions, »n7T occurs at t = w/2w - T/2, so that n = /2wl - 1/2.
The maximum error occurs when T = 1/2. On substituting these values in the
FOHI error relation and assuming small w7, the solution for maximum error
provides

~~

4 8

(26)



The results are as one might expect from inspection of figure 2; the ZOH DAC
exhibits the most error and the FOHI DAC the least. Table 1 gives a compari-
son of the relative DAC error for the wTl of interest in aircraft simulations.

TABLE 1.- RELATIVE SMOOTHNESS USING THE MAXIMUM ERROR IN THE DAC
REPRESENTATION OF A SINE WAVE OF AMPLITUDE A AND FREQUENCY w

Relative error €max/A
w?
ZOH FOHE FOHI
0.1 0.1 0.01 0.00125
.2 .2 .04 .005
.3 .3 .09 .01125
A iy .16 .02
.5 .5 .25 .03125
.6 .6 .36 . 045

COMPARISON OF THE DAC CONFIGURATIONS

Figure 3 illustrates the magni- 16
tude and phase for each of the three 14
DACs under consideration. The ZOH 1.2
DAC appears to be superior in terms
of less phase lag over the range
shown and also in the way its magni-
tude is relatively flat at low 6
values of wl. In some control sys-— 4
tems, w7 might range close to the 2
0
0

1.0
.8

%—GUwH

maximum allowable of w7 = m, whereas,

in simulations of aircraft, such

things as numerical instabilities of
integration algorithms require _200
wl < 0.6 in practical cases. For
example, the second-order Adams-
Bashforth predictor, an integration
algorithm commonly used in simula-
tion, is numerically unstable when
w? = 1.0; the third-order Adams-
Bashforth is unstable when w7 = 0.5. —800 , . | ! ' ' |
In this case, w is the natural fre- T

quency of the system under consider-

ation. To obtain reasonable accuracy, Figure 3.- Magnitude and phase charac-
w7 must be considerably smaller than teristics of zero- and first-order
the stability bound. DAC's.

ZOH
—400

% G, deg

—600

A second rationale for limiting w7 to 0.6 concerns the aircraft itself.
The value of w in aircraft simulations depends on the aircraft type: a trans-
port, such as the DC-8, has its highest short-period frequency at approximately
3.6 rad/sec; a high-performance aircraft, such as the A7, has its highest



FOHE

ZOH

FOHI

12
1.0
2 Glj)|
8 (
<
-10
% G, deg
-20
—-30
_40! L

ZOH

FOHI

Figure 4.- Enlargement of magnitude
and phase characteristics of the

DAC's at low wT.

Phase Compensation

value at about 8.5 rad/sec; while a
helicopter's flapping frequency, such
as the CH-46, has a value of about

14 rad/sec. Using a T of 0.05, a
representative value in aircraft
simulations, w7 is 0.7 for the CH-46,
but for the fixed wing aircraft, wT
is well below 0.6. Consequently,
helicopter simulations present com-
putation problems for digital com-
puters and require special modelling
techniques.

Figure 4 shows the phase and
magnitudes of the DAC's over the
lower range of w7. It is interest-
ing to note that the FOHI and ZOH
DAC's are almost flat in magnitude
over this range. The phase of the
FOHE DAC is very good over this

range, but near an wl of 0.5, the
DAC shows significant gain.
The phase of the FOHI DAC is

that of a pure one-7 lag. 1If,
somehow, a pure one-7 lead could

be introduced, the combination of
lead and FOHI DAC would: be very
smooth, have flat frequency
response over wl ranges of interest,
and have zero phase error.

of the FOHI DAC

To show that the phase lag of the FOHI DAC is equivalent to a one-T lag,
consider a unit which might produce such a lag:

u(t)

:>;/u(nT)

Between v and u is the T-lag device.

10

V(z)/U(z) = 771

z—1

v(nT)

In terms of Z-transforms,

(27)



Now
Z = e = e = cos wl + j sin wT (28)

so that upon substitution of equation (28) into (27) the magnitude and phase
of the lag device are

V(gw) | _
’U(jm 1 (29)
and
X V(jw)/U(Gw) = —wT (30)

Thus, comparing equation (20) with (30) is seen that the FOHI DAC has the phase
of a one-T time-lag device. A device which produces a pure one-7 lead would

be useful in compensating for the time lag, but, unfortunately, is not avail-
able. However, one can resort to a computer programming procedure to intro-
duce the desired one-7 lead in certain applications.

Consider the case in which a second-order system precedes the DAC. For
example, in the visual display for an aircraft simulation, the camera servo is
positioned in the translational direction X through a double integration of
the X component of the aircraft's acceleration:

. X X Camera
X— [dt fdt DAC Servo

On the digital computer, the integrations are performed numerically with an
integration algorithm. As an example, the Euler integration method illustrates
how a one-T lead may be generated through the double integration process.

Applying the Euler algorithm in the double integration as illustrated
above, we have

zT) = z[(n - 1T + Te{(n - 1)T] (31)

x (nT) x[(n - 1)T] + Tx[(n - 1)T] (32)
The computational technique would normally be to solve equation (32) first

for x(nT) and then equation (31) for x(nT), in that order. The DAC output at

the time nT is x(nT). Now, if the order of integration is reversed, the first

calculation yields x(nT); the second integration is performed by using x(nT)

to obtain x{(n + 1)T]. When x[(n + 1)7] is transmitted through the DAC at

time nT, a full one-cycle lead has been obtained. When this technique is com-

bined with the FOHI DAC, the phase lead of the computation cancels the phase

lag of the DAC.

Where there is no second-order (or higher) system preceding the DAC, the
application of the FOHI DAC is less advantageous. However, in cases where

11



there is one integration preceding the DAC, it is an easy matter to add a
simple lead term, thus converting the FOHI to a FOHE DAC as shown in figure 5.
The input to the DAC is of the form x + Tx, where Tx is the lead compensation.

1 1+Ts —Ts\2
—l 1+ — (1—e—Ts)2 — —= (1—e"Ts)
1+ Ts T2 T2
Lead + FOHt DAC = FOHE DAC

Figure 5.- Relationship between FOHI and FOHE DAC's.

Phase Compensation for the ZOH DAC

Since the ZOH DAC is widely used, it is worthwhile to describe one method
of compensation for the phase characteristics of this DAC. If the first time
derivative of the output is available within the digital computer, the addi-
tion of kX to the normal output x will result in phase lead, which may be used
to offset the phase lag of the DAC. 1In block form, the system is

X*(s) 1+ks 1—e T Y(s)
S
Compensation DAC
The input/output transfer function is
Y(s 1+ ks -Ts
) - a - &%) (33)

X*(s) =~ s

The phase of Y(s)/X*(s) is the phase of the compensation plus that of G,(s)

¢ = tan"! kw —~%?
When ¢ = O,
k=L pan &L
w 2
For wl < 0.6
tan YL ~ T
2 2
so that
- I
ko= 2

12



While setting X = T/2 results in nearly zero phase, there is a minimal gain
magnification with a value of 1.04 at an wl of 0.6.

CONCLUSION

The FOHI DAC offers a method of replacing the stairstep output of the
common ZOH DAC with a smooth signal. Where a DAC is associated with a second-
order (or higher) system, the programming procedure described will result in
an output which is smooth and has a flat frequency response without phase
error. By itself, the smooth signal is useful for cases where signal phase
angle is unimportant, as found in many nonreal-time applications. In the
real-time case, the DAC whose output commands a position servo system is often
associated with a second-order system simulated in the computer. In the field
of aircraft simulation, the visual simulators, in which a servo positions a
camera over a model runway scene, is such a system. Conventional ZOH DACs
produce "ratchetlike" jumps in the scene when either the signal frequency con-
tent or the computer stepsize is large. Through the use of FOHI DAC's, the
distracting ratchet response is eliminated, even for large step sizes. This
technique effectively conserves computer power by eliminating the need to
shorten computer step size to achieve needed smoothness. The time saved is
therefore available to expand the simulation model for increased fidelity.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, CA 94035, May 27,1976
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APPENDIX
TRANSFER FUNCTION OF A SAMPLED SIGNAL

The sampled signal x*(%) of a continuous signal x(¢) can be represented
by a series of spikes (delta functions) multiplied against x(t):

2 (£) = w(t) E §(t - kT)
k:—m

where

1 t = kT
§(t - kT) =

0 else

The Fourier Series representation of this summation is

z §(¢ - KkI) = Z ¢, exp(j2mt/T)
K=—o N==o0
where
T/2 =
_1 . 1
Gy = T '!-'T/z n;m §(t - nMexp(~j2mt/T)dt = 7

so that the Laplace transform is

Llx*x(t) ] J. x(t)[%; E exp(jZTmt/T)]e_ST dt

=—0c0

=% Z f z(t)exp[ (- + 2mnT 1)tldt
n:—oo — OO

Now if

o

x(8) =f x(t)e

[ee]

vt

then

fee]

x(s - j2m/t) = f x(t)e

-—C0

-(s-g2m/T) at

14



and so

o

Llext)] = 1T Y als - jom/T)

n:—- o0

Alternative Version of the Transfer Function

Whereas the first version of the transfer function yields a result with
a repeating spectrum, this alternative is of more use in the mathematical
operations dealing with the discrete sampled signals. Again, the sampled
signal is represented by a summation of the sampled signals, but the 'sifting"
properties of the delta function are utilized rather than the spectral proper-
ties of the Fourier Series approach.
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It is convenient in working with discrete signals to use the following
shifting property of the transform:
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